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* Brief history of the field

» Current status and main open questions

e |mportant future measurements

disclaimer: personal view and limited set of observables



Brief History

1970: QCD, asymptotic freedom, shock flow, Bevalac, Dubna

» first characterisation of the collision; fireball model, coalescence, ...

1980: Quark Gluon Plasma, Bevalac, AGS, SPS

» collective flow, HBT, thermal model, ....

1990: AGS, SPS

« J/W suppression, strangeness enhancement, ...

2000: SPS, RHIC, the perfect liquid (paradigm change)

* large collective flow, high-p, suppression, ...

2010: SPS. RHIC, LHC

* higher harmonics, jet suppression, open heavy flavor, quarkonia, ...

Leading to a standard model for the QGP evolution!
Due to 40 years of experimental and theoretical effort for different size systems and energies!
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QCD Phase Diagram
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2002 Long Range Plan

- and very possibly, new and unexpected phenomena
in the realm of nuclear matter at the highest densities
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2007 Long Range Plan

- The major discoveries in the first five years of RHIC must be followed by a
broad, quantitative study of the fundamental properties of the quark-gluon-
plasma

* The almost Perfect Liquid (2005)

 discovered experimentally: elliptic flow, Analogy: Superconductivity
high-p; suppression experimentally discovered 1911:
Heike Kamerlingh Onnes
* macroscopic description: viscous macroscopic theory 1950:

Ginzburg-Landau

microscopic theory 1957:
Bardeen, Cooper and Schrieffer

relativistic hydrodynamics

* we are still lacking understanding from first
orinciple QCD: quasiparticles, fields,...?

e required even for an effective theory

recent excitement/controversie of finding collective effects in pA (dA) is a clear

practical example of how important this is
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EXperimental Progress

just a few examples
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Impact Puplications

e the experimental RHIC program is very productive

IN producing papers and the papers are highly
cited

o whitepapers (1500-2000), many individual key
papers 500-1000, average papers ~100

* the same is true at the LHC, the heavy-ion papers
are cited as well and even while compared to

particle physics and the Higgs discovery 4 heavy-

ion papers in the top 10, 9 in top 30 of LHC
physics papers



The Standard Model for QGP Evolution
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e working description over large range of energies

o with at the same time also some clear deviations! how important are those”?
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The Standard Model for QGP
Evolution (fluctuations

Eccentricity fluctuations and its possible effect on elliptic flow measurements
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Small deviations from expectations sometimes
lead to important tools. Took a decade!
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The Standard Model for QGP
Evolution (fluctuations)

ALICE data v,{2}, p1>0.2 GeV

n/s =0.2

centrality percentile
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The Standard Model for
QGP Evolution

= kinetic theory
= |attice QCD

== AdS/CFT limit
= Vviscous hydro

viscous hydro + flow data

v

e constraints from parton energy loss?

A3
q/T
(e} —_ o W LS (9] [@)) ~

e constraints from heavy-guark
diffusion”

| Au+Au at RHIC

Pb+Pb at LHC
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What have we learned?

The matter is almost opaque for partons traversing it

The QGP at these temperatures (from direct photon measurements) behaves
like an almost perfect liquid (from anisotropic flow)

At (highest) RHIC and LHC energies all observations are consistent with the
creation of a strongly interacting QGP in heavy-ion collisions

We have a working description with a standard model of heavy-ion collisions
e initial state fluctuations of the (sub) nucleonic degrees of freedom

e rapid applicability of relativistic viscous hydrodynamics with lattice EoS for
bulk of the system evolution

 |ate stage described by hadronic transport
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What have we learned?
-> open questions

What are the initial spatial densities (we have a good match with theory but how unique is this?), how
much pre-equilibrium flow?

* pre-equilibrium flow; follows from general arguments but also from AdS/CFT, CGC, ..., required to
explain e.g. HBT

How big is the bulk viscosity and how precise can we constrain the specific shear viscosity as function of
temperature?

How well do we understand the transition from the high density QGP stage to the hot hadronic stage”
Which systems can still be described in terms of bulk (hydro)dynamics?
What are the relevant degrees of freedom from low to high-p,
* what is happening at intermediate p,?
The lattice QCD EoS is used as input; how well can we constrain it?

Can we get the standard model of the QGP precise enough for discoveries of new phenomena (CME,...)?

- experimental constrains from excitation functions (testing temperature dependence of the system) with
precision measurements at the highest energies (RHIC and LHC) and variation of system size (and new
fools like e.qg. event-shape engineering!)

14
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- The lattice QCD EoS is used as input; how well can we constrain it?
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experimental constrains from excitation functions (testing temperature dependence of the system) with
precision measurements at the highest energies (RHIC and LHC) and variation of system size (and new
tools like e.g. event-shape engineering!)
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Equation of State

Constraining Eq. of State with RHIC/LHC Data (MADAI Collab.)
Lattice: Hot QCD / BW

upper/lower ranges (arXiv:1407.6387)
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Constraints from RHIC and LHC data
We start to answer the question how well we can constrain the EoS
We need more developments like this
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Working description®
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e repairing both yield and vz is a challenge

e A standard model for QGP evolution should
describe this, both at RHIC and at the LHC!
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Do we understand the transition from the QGP
to a hot hadron gas”?

ALICE VISHNU 10-20%
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O
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* hadronic stage description of v,(m,p,)?
* particle production?
* intermediate p,; &f7

* centrality dependence v,(p,), v,?
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Initial Spatial Density
Distripbutions

Solid: IP-Glasma
Dash-dotted: MC-Glauber
Dashed: MC-KLN
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— Elliptic Power
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20-25%
e ATLAS v,

- Power
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To determine if the match is truly unigue or can be obtained in more
models, with some modifications, we need to understand the sensitivity
to the underlying distribution
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Bulk Viscosity”

[o]vA2, Iani > 1}
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] I(1,n X ESGC{2}

1 15 2 25 3 35 4 45 5
centrality percentile

* The effects of bulk and shear viscosity are in most descriptions not
separately tested

e constraining bulk viscosity is an important next step

 (ultra) central collisions is an unexpected place where anisotropic

flow is a sensitive probe which might help constraining even the
bulk viscosity
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Other Collision Systems: U+U

—— |P-Glasma

Glauber
Top 0.1% ZDC

STAR Preliminary

1.0
Mult/<Mult>

* with a special system like U+U one get get large variations of the initial eccentricities while
keeping impact parameter fixed!

* sensitivity to initial spatial density distribution

3
* looking forward to results from He+Au
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Other collision systems: pA

* The ridges

e similarities
between pA
and AA large!

ALICE, p-Pb, {Sy = 5.02 TeV ALICE, Pb-Pb, |5 = 2.76 TeV

e 0-5% e 0-5%
= 80-90%

ALICE, p-Pb, |sy, = 5.02 TeV ALICE, Pb-Pb, |s\, = 2.76 TeV

e 0-5% e 0-5%
= 60-80% = 80-90%
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Other collision systems: pA

VOA Multiplicity Event Class (Pb-side) (%)} p-Pb \“ENN =5.02 TeV nl <0.8 ALICE Preliminary
0-20 % 20-40 % 40-60 %
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clear evidence of collective behaviour

* not necessarily hydrodynamic POPD \Sy, =2.76 Tev PPD |sy, = 5.02 Tev
. 0.3<p_<3.0GeVic;inl<2.4 0.3<p_<3.0GeVic;inl<2.4
behaviour! T _ @ 000 T
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and connection to geometry not very
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v {4}
do we understand were hydro should ng
2
break down”? vALYZ} CMS Preliminary

100 200 200

offline offline
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Future RHIC Program

low energy e SPHENIX N
cooling upgrade  STAR forward upgrade transition to eRHIC
2017 2020 2023

2015-2016 2018-2019 2021-2022
runs: runs: runs:

200 GeV 5-20 GeV 200 GeV
PP, PAU, dAu, AuAu BES2 pp, p(d)A, AuAu
AuAu
goals: goals:
goals: critical point jet, dijets, y-jet,
initial state fluctuations onset deconfinement b-tagged jets
heavy flavour flow parton transport and energy loss
color screening quarkonia color screening quarkonia
constraining n/s saturation
saturation energy loss in CNM
energy loss in CNM nPDF
nPDF

Key future measurements to improve the heavy-ion standard model,
understand the perfect liquid from QCD and discover the critical point
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Future LHC Program

upgrade to full energy increase in luminosity high luminosity LHC
10 x more data 10x 100 x more data

LS | S2 L S3
2014 7/2018-2019 2023-2025

2015-2018 2020-2022 2025-2027

runs: runs: runs:
55 TeV 5.5 TeV 5.5 TeV
PbPb (2015), PbPb (2016), pPb (2017) PA, PbPb PA, PbPb, ArAr
goals: goals:
jet, dijets, y-jet, Z-jet jet, dijets, y-jet, Z-jet, W-jet
differentially versus centrality, flow plane, pid differentially versus centrality, flow plane, pid
multi-particle correlations, vy correlations parton transport and energy loss
parton transport and energy 10ss color screening quarkonia
color screening quarkonia low-mass di-leptons, p-spectral function, thermal photons
low-mass di-leptons, p-spectral function, thermal photons saturation, low-x
saturation, low-x t-tbar in heavy-ions

collectivity in pA
Key future measurements to improve the heavy-ion standard model and
understand the perfect liquid from QCD
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Why both RHIC and the LHC,
and what will they deliver?

Both RHIC and the LHC are unique facilities

The properties of the QGP at small pg and parts of the QCD phase diagram are already
understood much better due to RHIC and the LHC

» At small yg a precise standard model for the QGP evolution is emerging

Currently the field is poised to make an important breakthrough in the understanding of how
the ideal fluid bulk behaviour emerges from QCD degrees of freedom

» For this we need to complete the heavy-ion “standard model”, which goes hand in hand
with precision bulk observables and hard probes, which become available with the new/
upgraded detectors and facilities delivering collisions for different systems and energies

We need both precision data and range in T and pg
* Imagine how the J/W story would look like with only measurements at the SPS

The energy scan which is an important ingredient for completing the heavy-ion “standard
model” and provides a unique opportunity to discover one of the main landmarks in the
QCD phase diagram; the critical point
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QCD Phase Diagram

The beam energy scan is important in the
construction of a precise model of the evolution of
the QGP and hadronic phase. With such a precise
model, the opportunity to discover one of the main
landmarks of the QCD phase diagram is maximised

Highest RHIC and LHC energies FEarly Universe
allow us to obtain a precise model of LHC Experiments
the QGP evolution (also contributions g\ e Erperments

from hadronic phase)
and with precision hard probes we
might have the possibility to explain
how a perfect liquid emerges around

Tc from QCD degrees of freedom.

A precise model would provide an Criical Point ?
important bases for discoveries such
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Quark-Gluon Plasma

Hadron Gas

as CME and other unexpected Superconductor
phenomena Neutron Stars
<~

Baryon Chemical Potential



Outlook/Conclusions

* Inthe last 40 years enormous progress has
been made in the field

e a paradigm change in the last 10 years

+ The next decade is crucial, could be a perfect
storm (RHIC, LHC, machine and detector
upgrades and a strong theoretical commitment)

* very possibly, new and unexpected phenomena
In the realm of nuclear matter at the highest
densities will be discovered
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